Let $f(x)=\frac{(3 x-2)^{2}}{x^{3}} \quad, x \neq 0$
Find $f^{\prime}(x)$

$$
f(x)=\frac{(3 x-2)^{2}}{x^{3}}
$$

$$
\begin{aligned}
& f(x)=\frac{g(x)}{h(x)} \\
& f^{\prime}(x)=\frac{h(x) g^{\prime}(x)-h^{\prime}(x) g(x)}{[h(x)]^{2}}
\end{aligned}
$$

$$
g(x)=(3 x-2)^{2} \quad h(x)=x^{3}
$$

$$
\frac{d}{d x}[f(x)]^{n}=n \cdot f^{\prime}(x) \cdot[f(x)]^{n 1}
$$

$$
\begin{aligned}
& g^{\prime}(x)=2 \cdot 3(3 x-2)^{1} \quad h^{\prime}(x)=3 x^{2} \\
& g^{\prime}(x)=6(3 x-2) \\
& f^{\prime}(x)=\frac{h(x) g^{\prime}(x)-h^{\prime}(x) g(x)}{[h(x)]^{2}} \\
& f^{\prime}(x)=\frac{x^{3} \cdot 6(3 x-2)-3 x^{2}(3 x-2)^{2}}{\left[x^{3}\right]^{2}} \\
& f^{\prime}(x)=\frac{6 x^{3}(3 x-2)-3 x^{2}(3 x-2)^{2}}{x^{6}}
\end{aligned}
$$

Factorise

$$
\begin{aligned}
& f^{\prime}(x)=\frac{3 x^{2}(3 x-2) \cdot 2 x-3 x^{2}(3 x-2)(3 x-2)}{x^{6}} \\
& f^{\prime}(x)=\frac{3 x^{2}(3 x-2)(2 x-(3 x-2))}{x^{6}} \\
& f^{\prime}(x)=\frac{3 x^{2}(3 x-2)(2 x-3 x+2)}{x^{6}} \\
& f^{\prime}(x)=\frac{3 x^{2}(3 x-2)(-x+2)}{x^{6}}
\end{aligned}
$$

$f^{\prime}(x)=\frac{3(3 x-2)(-x+2)}{x^{4}}$

