The graph of $y=\frac{2 x}{\sqrt{x-1}}, x>1$ has a local minimum.
Find the coordinates of this point.
$y=\frac{2 x}{\sqrt{x-1}}$

$$
y=\frac{u}{v}
$$

$$
\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

$$
\begin{array}{ll}
u=2 x & v=\sqrt{x-1}=(x-1)^{\frac{1}{2}} \\
\frac{d u}{d x}=2 & \frac{d v}{d x}=\left(\frac{1}{2}\right) \cdot 1(x-1)^{-\frac{1}{2}} \\
\frac{d v}{d x} & =\frac{1}{2 \sqrt{x-1}}
\end{array}
$$

$\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
$\frac{d y}{d x}=\frac{\sqrt{x-1} \cdot 2-2 x \frac{1}{2 \sqrt{x-1}}}{(\sqrt{x-1})^{2}}$
$\frac{d y}{d x}=\frac{2 \sqrt{x-1}-\frac{x}{\sqrt{x-1}}}{x-1}$
$\frac{d y}{d x}=\frac{\frac{2(x-1)}{\sqrt{x-1}}-\frac{x}{\sqrt{x-1}}}{x-1}$
$\frac{d y}{d x}=\frac{\frac{2(x-1)-x}{\sqrt{x-1}}}{x-1}$
$\frac{d y}{d x}=\frac{2 x-2-x}{(x-1) \sqrt{x-1}}$
$\frac{d y}{d x}=\frac{x-2}{(x-1)^{\frac{3}{2}}}$
Local maximum occurs where $\frac{d y}{d x}=0$
$\frac{x-2}{(x-1)^{\frac{3}{2}}}=0$
$x-2=0$
$x=2$
$x \neq 1$, since $x>1$

$$
y=\frac{2 x}{\sqrt{x-1}}
$$

$$
y=\frac{2(2)}{\sqrt{2-1}}=4
$$

Minimum at $(2,4)$

