Related Rates of Change

Tips for success on these type of questions

You often need to interpret a word problem. Write down what you know and what you are expected to find:

The sides of a cube are increasing at $0.5 \mathrm{cms}^{-1} \frac{d x}{d t}=0.5$
When the sides of the cube are 5 cm , what is the rate at which the surface area is increasing?

$$
\frac{d A}{d t}=?
$$

The radius of a cone is 6 cm . The radius is increasing at $0.5 \mathrm{cms}^{-1} \quad \frac{d r}{d t}=0.5$
The height of the same cone is 5 cm . The height is increasing at a rate of $1 \mathrm{cms}^{-1} \quad \frac{d h}{d t}=1$ Find the rate at which the volume of the cone is increasing.

$$
\frac{d V}{d t}=?
$$

Often you are required to set up a formula that connects the variables in the question. Make sure that you set up and use your variables carefully:

length of side $=x$

The sides of a cube are increasing at $0.5 \mathrm{cms}^{-1}$
When the sides of the cube are 5 cm , what is the rate at which the surface area is increasing?

$$
A=6 x^{2}
$$

radius $=r$

The radius of a cone is 6 cm . The radius is increasing at $0.5 \mathrm{cms}^{-1}$
The height of the same cone is 5 cm . The height is increasing at a rate of $1 \mathrm{cms}^{-1}$ height = h
Find the rate at which the volume of the cone is increasing.

$$
V=\frac{1}{3} \pi r^{2} h
$$

Rate of change is usually with respect to time. Take your formula and differentiate it with respect to time, \boldsymbol{t}. This will involve implicit differentiation:

$$
\begin{gathered}
A=6 x^{2} \\
\frac{d A}{d t}=12 x \frac{d x}{d t} \\
V=\frac{1}{3} \pi r^{2} h \\
\frac{d V}{d t}=\frac{1}{3} \pi\left(r^{2} \frac{d h}{d t}+h \cdot 2 r \frac{d r}{d t}\right)^{\circ}
\end{gathered}
$$

All you have to do now is input all the information that we know and work out the unknown rate.

