a) Find the equation of the normal to the curve $f(x)=\frac{1}{x}$ at the point $\mathrm{P}\left(-2,-\frac{1}{2}\right)$.
b) Find the co-ordinates of the point where this normal meets the curve again.

a)
$f(x)=\frac{1}{x}$
$f(x)=x^{-1}$
Find the gradient function
$f^{\prime}(x)=-1 x^{-2}$
$f^{\prime}(x)=\frac{-1}{x^{2}}$
$f(-2)=\frac{-1}{(-2)^{2}}$
$f(-2)=\frac{-1}{4}$
Tangent has gradient $=-\frac{1}{4}$
Find the gradient at the point $\mathrm{P}\left(-2,-\frac{1}{2}\right)$

$$
\text { Gradient of normal }=-\frac{1}{\text { gradient of tangent }}
$$

Normal has gradient $=4$
Equation of the normal
$y=4 x+c$
The line passes through the point $\left(-2,-\frac{1}{2}\right)$
Find c
$-\frac{1}{2}=4(-2)+c$
$-\frac{1}{2}=-8+c$
$7 \frac{1}{2}=c$
$\mathrm{c}=\frac{15}{2}$
$y=4 x+\frac{15}{2}$
$y=\frac{1}{x}$
$y=4 x+\frac{15}{2}$
Find the intersection of the curve and the normal
$\frac{1}{x}=4 x+\frac{15}{2}$
Multiply both sides by x
$1=4 x^{2}+\frac{15}{2} x$
$2=8 x^{2}+15 x$
$8 x^{2}+15 x-2=0$

Factorise

...we know $(x+2)$ is a factor
$(x+2)(8 x-1)=0$
$x=-2, x=\frac{1}{8}$

Point of intersection $\left(-\frac{1}{8}, 8\right)$

