The function $f(x)=x^{3}-x^{2}-9 x+9$ intersects the x axis at A, B and C .
The x coordinate of the point D is the mean of the x coordinates of B and C.

a) Find the coordinates of A, B and C.
b) Find the equation of the tangent to the curve at D.
c) Find the point of the intersection of the tangent with the curve. Interpret your result.
a)
$f(x)=x^{3}-x^{2}-9 x+9$
$f(3)=(3)^{3}-(3)^{2}-9(3)+9$
$f(3)=0 \quad$ hence $\mathrm{x}-3$ is a factor
$f(-3)=(-3)^{3}-(-3)^{2}-9(-3)+9$
$f(-3)=0 \quad$ hence $\mathrm{x}+3$ is a factor
$(x-3)(x+3)=x^{2}-9$
Find the remainder when $x^{3}-x^{2}-9 x+9$ is divided by $x^{2}-9$
$\left(x^{2}-9\right)(a x+b) \equiv x^{3}-x^{2}-9 x+9$
Equate x^{3} terms
$a x^{3}=x^{3}$
$a=1$
Equate units
$-9 b=9$
$b=1$
Hence $x+1$ is a factor
$f(x)=(x-1)(x-3)(x+3)$
A, B and C are the x intercepts
$A(-3,0), B(1,0), C(3,0)$
Use Factor Theorem to find the zeros of the function f

Find the remainder when $x^{3}-x^{2}-9 x+9$ is divided by $x^{2}-9$
©
b)
$B(1,0), C(3,0)$
Find coordinates of D
x coordinate $=\frac{1+3}{2}=2$
$f(2)=(2-1)(2-3)(2+3)$
$f(2)=(1)(-1)(5)=-5$
$D(2,-5)$
$f(x)=x^{3}-x^{2}-9 x+9$
$f^{\prime}(x)=3 x^{2}-2 x-9$
Find gradient function

Find gradient of tangent at D
$f^{\prime}(2)=3(2)^{2}-2(2)-9$
$f^{\prime}(2)=12-4-9=-1$
Find the equation of the tangent
gradient $=-1$
$y=-x+c$
Tangent passes through the point $\mathrm{D}(2,-5)$
$-5=-2+c$
$c=-3$
$y=-x-3$
c)

Find intersection of $y=-x-3$ with $y=x^{3}-x^{2}-9 x+9$
$x^{3}-x^{2}-9 x+9=-x-3$
$x^{3}-x^{2}-8 x+12=0$

We know that $(x-2)^{2}$ is a factor
$(x-2)^{2}=x^{2}-4 x+4$
$x^{3}-x^{2}-8 x+12=(c x+d)\left(x^{2}-4 x+4\right)$
Equate x^{3} terms

Equate units
$12=4 d$
$d=3$
$x+3$ is the other factor

Tangent intersects with curve at $x=-3$
This is the point C
$(-3,0)$

