The function $f(x) = x^3 - x^2 - 9x + 9$ intersects the x axis at A, B and C. The x coordinate of the point D is the mean of the x coordinates of B and C.

- a) Find the coordinates of A, B and C.
- b) Find the equation of the tangent to the curve at D.
- c) Find the point of the intersection of the tangent with the curve. Interpret your result.

a)

$$f(x) = x^{3} - x^{2} - 9x + 9$$
Use Factor Theorem to find the zeros of the function f

$$f(3) = (3)^{3} - (3)^{2} - 9(3) + 9$$

$$f(3) = 0 \qquad \text{hence } x - 3 \text{ is a factor}$$

$$f(-3) = (-3)^{3} - (-3)^{2} - 9(-3) + 9$$

$$f(-3) = 0 \qquad \text{hence } x + 3 \text{ is a factor}$$

$$(x - 3)(x + 3) = x^{2} - 9$$
Find the remainder when $x^{3} - x^{2} - 9x + 9$ is divided by $x^{2} - 9$

$$(x^{2} - 9)(ax + b) \equiv x^{3} - x^{2} - 9x + 9$$
Equate x^{3} terms

$$ax^{3} = x^{3}$$

$$a = 1$$
Equate units

$$-9b = 9$$

$$b = 1$$
Hence $x + 1$ is a factor

$$f(x) = (x - 1)(x - 3)(x + 3)$$
A, B and C are the x intercepts
A(-3,0), B(1,0), C(3,0)

b) B(1,0) , C(3,0)

	Find coordinates of D
x coordinate = $\frac{1+3}{2} = 2$	
	y coordinate = $f(2)$
f(2) = (2 - 1)(2 - 3)(2 + 3) f(2) = (1)(-1)(5) = -5	
D(2,-5)	
$f(x) = x^3 - x^2 - 9x + 9$	
	Find gradient function
$f'(x) = 3x^2 - 2x - 9$	
	Find gradient of tangent at D
$f'(2) = 3(2)^2 - 2(2) - 9$	
f'(2) = 12 - 4 - 9 = -1	
	Find the equation of the tangent gradient = -1
y = -x + c	
	Tangent passes through the point D(2,-5)
-5 = -2 + c	
c = -3	

y = -x - 3

 $x^{3} - x^{2} - 9x + 9 = -x - 3$ $x^{3} - x^{2} - 8x + 12 = 0$

We know that $(x-2)^2$ is a factor

 $(x-2)^2 = x^2 - 4x + 4$ $x^3 - x^2 - 8x + 12 = (cx + d)(x^2 - 4x + 4)$

Equate x^3 terms

 $x^3 = cx^3$ c = 1

Equate units

12 = 4dd = 3

x + 3 is the other factor

Tangent intersects with curve at x = -3

This is the point C

(-3 , 0)