
Let f(x) = (x - 1)(x - 4)(x + 2). The diagram below shows the graph of  $\boldsymbol{f}$  and the point P where the graph crosses the x axis.

The line L is the tangent to the graph of f at the point P.

The line L intersects the graph of f at another point Q, as shown below



a) Find the coordinates of P

b) Show that 
$$f(x) = x^3 - 3x^2 - 6x + 8$$

- c) Find the equation of L in the form y = ax + b
- d) Find the x coordinate of Q.

a) Find the coordinates of P

$$f(x) = (x - 1)(x - 4)(x + 2)$$

Point P when x = 0. Find y coordinate by calculating f(0)

$$f(0) = (-1)(-4)(2) = 8$$
  
P(0,8)

b) Show that 
$$f(x) = x^3 - 3x^2 - 6x + 8$$

$$f(x) = (x - 1)(x - 4)(x + 2)$$

Expand the brackets. Start by expanding 1 pair of brackets.

$$f(x) = (x - 1)(x^2 - 2x - 8)$$
  

$$f(x) = x(x^2 - 2x - 8) - 1(x^2 - 2x - 8)$$
  

$$f(x) = x^3 - 2x^2 - 8x - 1x^2 + 2x + 8$$



$$f(x) = x^3 - 3x^2 - 6x + 8$$

c) Find the equation of L in the form y = ax + b

Find f'(x)

$$f'(x) = 3x^2 - 6x - 6$$

Find gradient a P

$$f'(0) = 3 \cdot 0^2 - 6 \cdot 0 - 6$$

$$f'(0) = -6$$

The tangent has gradient = -6

$$y = -6x + c$$

The tangent passes through the point (0,8)

$$y = -6x + 8$$

d) Find the x coordinate of Q.

Find the intersection of the tangent and the curve

$$-6x + 8 = x^3 - 3x^2 - 6x + 8$$

Write in the form g(x) = 0

$$x^3 - 3x^2 = 0$$

Factorise

$$x^2(x-3)=0$$

Solve

$$x = 0$$
,  $x = 3$ 

Hence the x coordinate of Q = 3