The cubic polynomial $3x^3 + ax^2 + bx - 12$ has a factor (x - 2) and leaves a remainder of -20 when divided by (x - 1). Find the value of a and the value of b.

Let
$$f(x) = 3x^3 + ax^2 + bx - 12$$

 $(x-2)$ is a factor $f(2) = 0$
 $f(2) = 3(2)^3 + a(2)^2 + b(2) - 12 = 0$
 $3 \times 8 + a \times 4 + 2b - 12 = 0$
 $4a + 2b = -12$
 $2a + b = -6$

Remainder of
$$-20$$
 when divided by $(x-1)$
$$f(1)=-20$$

$$f(1)=3(1)^3+a(1)^2+b(1)-12=-20$$

$$3+a+b-12=-20$$

$$a+b=-11$$

$$2a+b=-6$$

$$a+b=-11$$

$$a=5$$

$$b=-16$$