The cubic polynomial $3 x^{3}+a x^{2}+b x-12$ has a factor $(x-2)$ and leaves a remainder of -20 when divided by $(x-1)$. Find the value of a and the value of b.

$$
\text { Let } f(x)=3 x^{3}+a x^{2}+b x-12
$$

$$
\begin{aligned}
& (x-2) \text { is a factor } \\
& \qquad f(2)=0 \\
& \qquad \begin{array}{l}
f(2)=3(2)^{3}+a(2)^{2}+b(2)-12=0 \\
\\
3 \times 8+a \times 4+2 b-12=0 \\
\\
4 a+2 b=-12 \\
\\
2 a+b=-6
\end{array}
\end{aligned}
$$

Remainder of -20 when divided by $(x-1)$
$f(1)=-20$

$$
\begin{aligned}
& f(1)=3(1)^{3}+a(1)^{2}+b(1)-12=-20 \\
& 3+a+b-12=-20 \\
& a+b=-11 \\
& 2 a+b=-6 \\
& a+b=-11 \\
& a=5 \\
& b=-16
\end{aligned}
$$

