It is given that $f(x)=x^{3}+a x^{2}+b x+8$
a) Given that $\left(x^{2}-4\right)$ is a factor of $f(x)$, find the value of a and the value of b.
b) Factorize $f(x)$ into a product of linear factors.
c) Sketch the graph of $y=f(x)$ labelling any stationary points and the x and y intercepts.
d) Hence state the range of values of \boldsymbol{k} for which $f(x)=k$ has exactly one root.
a)

$$
\text { Let } f(x)=x^{3}+a x^{2}+b x+8
$$

$$
\left(x^{2}-4\right) \text { is a factor }
$$

Therefore $(x-2)(x+2)$ is a factor

$$
\begin{array}{r}
(x-2) \text { is a factor } \\
f(2)=0
\end{array}
$$

$$
\begin{aligned}
& f(2)=(2)^{3}+a(2)^{2}+b(2)+8=0 \\
& 8+4 a+2 b+8=0 \\
& 4 a+2 b=-16 \\
& 2 a+b=-8
\end{aligned}
$$

$$
\begin{array}{r}
(x+2) \text { is a factor } \\
f(-2)=0
\end{array}
$$

$$
\begin{aligned}
& f(-2)=(-2)^{3}+a(-2)^{2}+b(-2)+8=0 \\
& -8+4 a-2 b+8=0 \\
& 4 a-2 b=0 \\
& 2 a-b=0 \\
& 2 a+b=-8 \\
& 2 a-b=0 \\
& 4 a=-8 \\
& a=-2 \\
& b=-4
\end{aligned}
$$

b)

$$
\begin{aligned}
& f(x)=x^{3}-2 x^{2}-4 x+8 \\
& x^{3}-2 x^{2}-4 x+8=\left(x^{2}-4\right)(x-2) \\
& x^{3}-2 x^{2}-4 x+8=(x+2)(x-2)(x-2) \\
& x^{3}-2 x^{2}-4 x+8=(x+2)(x-2)^{2}
\end{aligned}
$$

c)

$$
\begin{aligned}
& x \text { intercepts } \\
& \qquad f(x)=0 \\
& \qquad \begin{array}{l}
(x+2)(x-2)^{2}=0 \\
\\
x=-2, x=2 \text { (repeated root) }
\end{array}
\end{aligned}
$$

y intercepts

$$
f(0)=8
$$

Use GDC to find the stationary points

$\mathrm{X}=-0.666666634^{-5} \mathrm{Y}=9.481481481$

Maximum at $(-0.67,9.48)$ and $(2,0)$

d)

$$
\begin{aligned}
& f(x)=k \text { has only one root } \\
& \qquad k<0, k>9.48
\end{aligned}
$$

