The cubic polynomial $a x^{3}+b x^{2}-29 x+60$ has a factor $(x+4)$ and leaves a remainder of 6 when divided by $(x-2)$.
a) Find the value of a and the value of b.
b) Factorize the polynomial

$$
\text { Let } f(x)=a x^{3}+b x^{2}-29 x+60
$$

$$
\begin{aligned}
& (x+4) \text { is a factor } \\
& \qquad f(-4)=0 \\
& \qquad \begin{array}{ll}
& f(-4)=a(-4)^{3}+b(-4)^{2}-29(-4)+60=0 \\
& a \times(-64)+b \times 16-29 \times(-4)+60=0 \\
& -64 a+16 b=-176
\end{array}
\end{aligned}
$$

Remainder of 6 when divided by $(x-2)$

$$
f(2)=6
$$

$$
f(2)=a(2)^{3}+b(2)^{2}-29(2)+60=6
$$

$$
8 a+4 b=4
$$

$$
(8 a+4 b=4) \times 4
$$

$$
-64 a+16 b=-176
$$

$$
32 a+16 b=16
$$

$$
96 a=192
$$

$$
a=2
$$

$$
b=-3
$$

$$
\begin{aligned}
& 2 x^{3}-3 x^{2}-29 x+60=(x+4)\left(2 x^{2}+q x+r\right) \\
& 2 x^{3}-3 x^{2}-29 x+60=(x+4)\left(2 x^{2}+q x+15\right)
\end{aligned}
$$

$$
2 x^{3}-3 x^{2}-29 x+60=(x+4)\left(2 x^{2}+q x+15\right)
$$

$$
\begin{array}{r}
8 x^{2}+q x^{2}=-3 x^{2} \\
q=-11
\end{array}
$$

$$
2 x^{3}-3 x^{2}-29 x+60=(x+4)\left(2 x^{2}-11 x+15\right)
$$

$$
=(x+4)(2 x-5)(x-3)
$$

