The remainder theorem states that for a polynomial $f(x)$,

the remainder when divided by $(x-a)$ is $f(a)$

The factor theorem states that for a polynomial $f(x)$,

$(x-a)$ is a factor if and only if $f(a)=0$

Factorize completely $f(x)=2 x^{3}+x^{2}-7 x-6$

$$
f(x)=2 x^{3}+x^{2}-7 x-6
$$

$(x-a)$ is a factor if and only if $f(a)=0$

Linear factors in the form $(a x \pm b)$
$a \in\{1,2\}$
$b \in\{1,2,3,6\}$

$$
\begin{array}{ll}
f(1)=2(1)^{3}+(1)^{2}-7(1)-6 & \\
f(1)=2+1-7-6 \neq 0 & (x-1) \text { is not a fac } \\
f(-1)=2(-1)^{3}+(-1)^{2}-7(-1)-6 & \\
f(-1)=-2+1+7-6=0 & (x+1) \text { is a factor } \\
f(2)=2(2)^{3}+(2)^{2}-7(2)-6 & \\
f(2)=16+4-14-6=0 & (x-2) \text { is a factor } \\
2 x^{3}+x^{2}-7 x-6=(x+1)(x-2)(a x+b) & \\
(x+1)(x-2)=x^{2}-x-2 & \\
2 x^{3}+x^{2}-7 x-6=\left(x^{2}-x-2\right)(2 x+3) \\
f(x)=(x+1)(x-2)(2 x+3)
\end{array}
$$

