Let $f(x)=2 x^{2}+12 x+11$
The function can also be expressed in the form $f(x)=a(x-h)^{2}+k$
a) Find the equation of the axis of symmetry
b) Write down the value of h
c) Write down the value of k
a) The line of symmetry of the graph

$$
y=a x^{2}+b x+c \quad \text { is } \quad x=-\frac{b}{2 a}
$$

The axis of symmetry of the graph

$$
f(x)=2 x^{2}+12 x+11 \quad \text { is } \quad x=-\frac{12}{2 \cdot 2}
$$

The axis of symmetry is $x=-3$
b) $f(x)=2 x^{2}+12 x+11 \equiv a(x-h)^{2}+k$

We know that $a=2$

Since the axis of symmetry is $x=-3$
and $y=a(x-h)^{2}+k$ gives us the vertex (h, k)
then $h=-3$
© Richard Wade studyib.net
c) The function becomes $f(x)=2 x^{2}+12 x+11 \equiv 2(x+3)^{2}+k$

$$
\begin{aligned}
2(x+3)^{2} & \equiv 2(x+3)(x+3) \\
& \equiv 2\left(x^{2}+6 x+9\right) \\
& \equiv 2 x^{2}+12 x+18
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=2 x^{2}+12 x+11 \equiv 2(x+3)^{2}+k \\
& f(x)=2 x^{2}+12 x+11 \equiv 2 x^{2}+12 x+18+k \\
& k=-7
\end{aligned}
$$

Alternative solution

$$
\text { b) } \begin{aligned}
& f(x)=2 x^{2}+12 x+11 \\
&=2\left(x^{2}+6 x\right)+11 \\
&=2(x+3)^{2}-2 \cdot 3^{2}+11 \\
&=2(x+3)^{2}-18+11 \\
&=2(x+3)^{2}-7 \\
& h=-3
\end{aligned}
$$

c) $k=-7$

