Let $f(x)=x^{2}+2 p x+(3 p+4)$

Find the value of p so that $f(x)=0$ has two equal roots.

For the general quadratic equation $a x^{2}+b x+c=0$ the discriminant $\quad \Delta=b^{2}-4 a c$

$$
\begin{aligned}
& x^{2}+2 p x+(3 p+4)=0 \\
& \quad \Delta=(2 p)^{2}-4 \cdot 1(3 p+4)
\end{aligned}
$$

equation has equal roots when $\Delta=0$

$$
4 p^{2}-12 p-16=0
$$

We can divide the equation through by 4

$$
p^{2}-3 p-4=0
$$

...and solve

$$
(p-4)(p+1)=0
$$

$$
p=4, p=-1
$$

We can see that this is true if we plot the graph of $f(x) \quad f(x)=x^{2}+2 p x+(3 p+4)$

$$
\begin{aligned}
& p=4 \quad f(x)=x^{2}+2 \cdot 4 x+(3 \cdot 4+4) \\
& f(x)=x^{2}+8 x+16 \\
& f(x)=(x+4)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& p=-1 \quad f(x)=x^{2}+2(-1) x+3(-1)+4 \\
& f(x)=x^{2}-2 x+1 \\
& f(x)=(x-1)^{2}
\end{aligned}
$$

