Let $f(x)=2 x^{2}+k x+1$ and $g(x)=-x-1$.
The graphs of f and g intersect at two distinct points.
Find the possible values of k

In order to find the points of intersection of the two functions, we solve

$$
\begin{aligned}
f(x) & =g(x) \\
2 x^{2}+k x+1 & =-x-1 \\
2 x^{2}+k x+x+2 & =0 \\
2 x^{2}+(k+1) x+2 & =0
\end{aligned}
$$

Depending on the value of the parameter k, f and g could meet ...at zero points

The discriminant of the quadratic equation, $\Delta<0$

...at one repeated point

The discriminant of the quadratic equation, $\Delta=0$

The discriminant of the quadratic equation, $\Delta>0$

This is the case we are asked to solve!

$2 x^{2}+(k+1) x+2=0$
$\Delta=b^{2}-4 a c$
$\Delta=(k+1)^{2}-4 \cdot 2 \cdot 2$
$\Delta=k^{2}+2 k+1-16$
$\Delta=k^{2}+2 k-15$
The discriminant of the quadratic equation, $\Delta>0$

$$
k^{2}+2 k-15>0
$$

Sketch the graph of $y=k^{2}+2 k-15$

$$
y=(k-3)(k+5)
$$

$k^{2}+2 k-15>0$
$k<-5, k>3$

$$
\begin{gathered}
f(x)=2 x^{2}+k x+1 \\
g(x)=-x-1
\end{gathered}
$$

The graphs of f and g intersect at two distinct points when
$k<-5, k>3$

