A quadratic function \boldsymbol{f} can be written in the form $f(x)=a(x-h)^{2}+k$. The graph of \boldsymbol{f} has vertex $(-1,4)$ and has y-intercept at $(0,5)$.
a) Find the value of $\boldsymbol{a}, \boldsymbol{h}$ and \boldsymbol{k}.
b) The line $y=\boldsymbol{m} x+1$ is a tangent to the curve \boldsymbol{f}. Find the value of \boldsymbol{m}.
a) Since $f(x)=a(x-h)^{2}+k$ gives us the vertex (h, k)

$$
\begin{aligned}
& \text { and the vertex is }(-1,4) \\
& \qquad \begin{array}{l}
\text { then } f(x)=a(x+1)^{2}+4 \\
h=-1, k=4
\end{array}
\end{aligned}
$$

The graph passes through the point $P(0,5)$

$$
x=0, y=5
$$

$$
5=a(0+1)^{2}+4
$$

$$
5=a+4
$$

$$
a=1
$$

$$
f(x)=(x+1)^{2}+4
$$

b)

If the line $y=m x+1$ is a tangent to the curve \boldsymbol{f}
then the solution to $m x+1=(x+1)^{2}+4$
...has one repeated root
$m x+1=x^{2}+2 x+1+4$
$0=x^{2}+2 x-m x+4$
$0=x^{2}+(2-m) x+4$
If this quadratic has one repeated root
...then the discriminant, $\Delta=0$

$$
\begin{aligned}
& \Delta=(2-m)^{2}-4 \cdot 1 \cdot 4 \\
& \Delta=(2-m)^{2}-16 \\
& \Delta=4-4 m+m^{2}-16 \\
& \Delta=m^{2}-4 m-12 \\
& m^{2}-4 m-12=0 \\
& (m-6)(m+2)=0 \\
& m=6, m=-2
\end{aligned}
$$

Here's what the solutions look like graphically

