The function f is defined by $f(x)=\frac{6 x+1}{2 x-1}, x \in \mathbb{R}, x \neq \frac{1}{2}$
a) Write by $f(x)$ in the form $A+\frac{B}{2 x-1}$ where A and B are constants
b) Sketch the graph of $\mathrm{y}=f(x)$ stating the equations of any asymptotes and the coordinates of any intercepts with the axes
a)

$$
\frac{6 x+1}{2 x-1} \equiv A+\frac{B}{2 x-1}
$$

$y=A$ is the equation of the horizontal asymptote
$f(x)=\frac{6 x+1}{2 x-1}$ has a horizontal asymptote at $y=3$

$$
\begin{aligned}
& \frac{6 x+1}{2 x-1} \equiv 3+\frac{B}{2 x-1} \\
& \frac{6 x+1}{2 x-1} \equiv \frac{3(2 x-1)+B}{2 x-1} \\
& 6 x+1 \equiv 3(2 x-1)+B \\
& 6 x+1 \equiv 6 x-3+B \\
& B=4
\end{aligned}
$$

$$
\frac{6 x+1}{2 x-1} \equiv 3+\frac{4}{2 x-1}
$$

b) The function has

$$
\begin{aligned}
& \text { a horizontal asymptote at } y=3 \\
& \text { a vertical asymptote at } x=\frac{1}{2}
\end{aligned}
$$

The y intercept occurs when $x=0$

$$
\begin{aligned}
& y=\frac{0+1}{0-1} \\
& y=-1
\end{aligned}
$$

The x intercept occurs when $y=0$

$$
\begin{aligned}
& \frac{6 x+1}{2 x-1}=0 \\
& 6 x+1=0
\end{aligned}
$$

$$
x=-\frac{1}{6}
$$

