Sketch the graph of $f(x)=\frac{x^{2}+x-1}{x+2}$ giving the equations of any asymptotes and the coordinates of the x and y intercepts as well as any stationary points
$f(x)=\frac{x^{2}+x-1}{x+2}$ has a vertical asymptote
where $x+2=0$

$$
\text { Vertical asymptote at } x=-2
$$

Check for any common factors with numerator and denominator.

Let $g(x)=x^{2}+x-1$
$g(-2)=(-2)^{2}+(-2)-1=1$
Therefore, $x+2$ is not a factor of $x^{2}+x-1$

Find the equation of the oblique asymptote

$f(x)=x-1+\frac{1}{x+2}$
Asymptote at $y=x-1$

Find the y intercept

$$
\begin{aligned}
& y=\frac{0^{2}+0-1}{0+2} \\
& y=-\frac{1}{2} \\
& y \text { intercept at }\left(0,-\frac{1}{2}\right)
\end{aligned}
$$

Find the x intercepts

$$
\begin{aligned}
& \frac{x^{2}+x-1}{x+2}=0, x \neq-2 \\
& x^{2}+x-1=0
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{-1 \pm \sqrt{1^{2}-4(1)(-1)}}{2} \\
& x=\frac{-1 \pm \sqrt{5}}{2} \\
& x \text { intercepts at }\left(\frac{-1-\sqrt{5}}{2}, 0\right) \text { and }\left(\frac{-1+\sqrt{5}}{2}, 0\right)
\end{aligned}
$$

Find any stationary points
Solve $f^{\prime}(x)=0$

$$
\begin{aligned}
& f(x)=x-1+\frac{1}{x+2} \\
& f^{\prime}(x)=1-\frac{1}{(x+2)^{2}} \\
& 1-\frac{1}{(x+2)^{2}}=0 \\
& 1=\frac{1}{(x+2)^{2}} \\
& (x+2)^{2}=1 \\
& x=-2 \pm 1 \\
& x=-3,-1 \\
& f(-3)=-3-1+\frac{1}{-3+2}=-5 \\
& f(-1)=-1-1+\frac{1}{-1+2}=-1
\end{aligned}
$$

Stationary points at $(-3,-5)$ and $(-1,-1)$

