Find the value(s) of \boldsymbol{a} such that $f(x)=\frac{x+1}{a x^{2}+3 x+2}$ has only one vertical asymptote

If $f(x)$ has only one vertical asymptote there are 2 possibilities

1) $a x^{2}+3 x+2$ has 2 equal factors
2) $x+1$ and $a x^{2}+3 x+2$ have a common factor
3)

$a x^{2}+3 x+2$ has 2 equal factors means that
$a x^{2}+3 x+2=0$ has 1 repeated root
Therefore, $\Delta=0$
Remember that $\Delta=b^{2}-4 a c$

$$
\begin{aligned}
& 3^{2}-4 a(2)=0 \\
& 9-8 a=0 \\
& a=\frac{9}{8}
\end{aligned}
$$

2)

$$
\begin{aligned}
& f(x)=\frac{x+1}{(x+1)(\ldots)} \\
& (x+1)(\ldots) \equiv a x^{2}+3 x+2 \\
& (x+1)(x+2) \equiv a x^{2}+3 x+2 \\
& a=1
\end{aligned}
$$

Hence

$$
a=1, \frac{9}{8}
$$

