Rational Functions

The Reciprocal Function
$f(x)=\frac{1}{x}, x \neq 0$

The domain of the function is $x \in \mathbb{R}, x \neq 0$
The range of the function is $f(x) \in \mathbb{R}, f(x) \neq 0$

The graph has

- a vertical asymptote at $x=0$
- a horizontal asymptote at $\mathrm{y}=0$

The Rational Function Case 1: $f(x)=\frac{a x+b}{c x+d}, x \neq-\frac{d}{c}$
The domain of the function is $x \in \mathbb{R}, x \neq-\frac{d}{c}$
The range of the function is $f(x) \in \mathbb{R}, f(x) \neq \frac{a}{c}$
The graph has

- a vertical asymptote at $x=-\frac{d}{c}$
- a horizontal asymptote at $y=\frac{a}{c}$

The graph does not have any stationary points
Make sure you include the x and y intercepts in sketches.

Special Function - the hole
If the numerator and denominator have a common linear factor, then the graph of the function is a horizontal line with a hole
e.g. $f(x)=\frac{4(x-3)}{x-3}, x \neq 3$

The Rational Function Case 2: $f(x)=\frac{a x^{2}+b x+c}{d x+e}, x \neq-\frac{e}{d}$
The process to go through to find any asymptotes and sketch the graph is as follows

$$
\begin{array}{ll}
f(x)=\frac{2 x^{2}+5 x-3}{x+3}, x \neq-3 & f(x)=\frac{2 x^{2}+5 x-2}{x+3}, x \neq-3 \\
f(x)=\frac{(2 x-1)(x+3)}{(x+3)} & f(x)=2 x-1+\frac{1}{x+3}, x \neq-3 \\
f(x)=2 x-1, \quad x \neq-3 &
\end{array}
$$

$$
\text { asymptote at } x=-3
$$

Vertical asymptote at $x=-3$

$$
\text { Vertical asymptote at } x=-3
$$

$$
\text { Oblique asymptote at } y=2 x-1
$$

The graph may have stationary points. Solve $\frac{d y}{d x}=0$
Make sure you include the x and y intercepts in sketches.

The Rational Function Case 3: $f(x)=\frac{a x+b}{c x^{2}+d x+e}, c x^{2}+d x+e \neq 0$
The graph has

- vertical asymptote(s) where $c x^{2}+d x+e=0$
- a horizontal asymptote at $y=0$

Check the numerator and the denominator for common factors
The graph may have stationary points. Solve $\frac{d y}{d x}=0$
These graphs are a little less predictable, so it is useful to explore the behaviour of the function

- as $x \rightarrow \pm \infty$
- close to the vertical asymptotes

Make sure you include the x and y intercepts in sketches.

$$
\begin{gathered}
\mathrm{f}(x)=\frac{x+2}{x^{2}+x-2} \\
f(x)=\frac{(x+2)}{(x+2)(x-1)} \\
\mathrm{f}(\mathrm{x})=\frac{1}{x-1}, \quad \mathrm{x} \neq 1
\end{gathered}
$$

Vertical asymptote at $x=1$

Vertical asymptote at $x=-2, x=1$
Horizontal asymptote at $y=0$
x intercept where $x=1=0, x=-1$ y intercept where $y=\frac{0+1}{(0+2)(0-1)}, y=-\frac{1}{2}$

Notice that even though there is an asymptote at $y=0$, the graph can cross the x axis

