The line l_{1} passes through the point $\mathrm{P}(3 \mathrm{k}, 2 \mathrm{k})$ with gradient $=-2$.
l_{1} meets the x axis at A and the y axis at B .
a) Find the equation of the line l_{1} and show that $A(4 k, 0)$
b) Find the area of the triangle AOB in terms of k

The line l_{2} passes through P and is perpendicular to l_{1}.
c) Find the equation of l_{2}
l_{2} meets the x axis at C
d) Show that the midpoint of PC lies on the line $y=x$
a) Drawing a sketch can be helpful to visualise the problem

Find the equation of the line l_{1} in terms of k
l_{1} passes through $(3 k, 2 k)$
with gradient $=-2$.

$$
y-2 k=-2(x-3 k)
$$

At point $A, y=0$

$$
0-2 k=-2(x-3 k)
$$

Divide both sides by -2

$$
\begin{aligned}
& k=x-3 k \\
& x=4 k \\
& A(4 k, 0)
\end{aligned}
$$

At point $B, x=0$

$$
\begin{aligned}
& y-2 k=-2(0-3 k) \\
& y-2 k=6 k \\
& y=8 k \\
& B(0,8 k)
\end{aligned}
$$

You can also work this out from the fact that the gradient of the line is -2
b)

Area $=\frac{1}{2} \times 4 k \times 8 k=16 k^{2}$

c)	
	$\begin{aligned} & l_{2} \\ & \text { gradicat }=\frac{1}{2} \\ & (3 k, 2 k) \end{aligned}$ A gradient $=-2$
$\begin{aligned} & l_{2} \text { passes through }(3 k, 2 k) \\ & \text { with gradient }=\frac{1}{2} \end{aligned}$	
	$y-2 k=\frac{1}{2}(x-3 k)$
	$2 y-4 k=x-3 k$
	$y=\frac{1}{2} x+\frac{k}{2}$
d) Let M be the midpoint of PC	
At point $\mathrm{C}, \mathrm{y}=0$	$y=\frac{1}{2} x+\frac{k}{2}$

	$0=\frac{1}{2} x+\frac{k}{2}$
	$0=x+k$
	$x=-k$
Find midpoint of PC	$C(-k, 0)$
	$M\left(\frac{-k+3 k}{2}, \frac{0+2 k}{2}\right)$
	$M(k, k)$
Since, x and y coordinates are equal, then M lies on the line $y=x$	

