Point A has coordinates $(\boldsymbol{a}, 6)$ and point B has coordinates $(5, \boldsymbol{b})$.
The line $8 x-6 y+3=0$ is the perpendicular bisector of AB
Find \boldsymbol{a} and \boldsymbol{b}.

Write equation in $y=m x+c$ form

$$
\begin{aligned}
& 8 x-6 y+3=0 \\
& 8 x+3=6 y \\
& y=\frac{4}{3} x+\frac{1}{2}
\end{aligned}
$$

Gradient of line $=\frac{4}{3}$
$A B$ is perpendicular to this line
Gradient of $A B=-\frac{3}{4}$

Use coordinates to find gradient of AB in terms
of a and b

$$
\text { Gradient of } A B=\frac{b-6}{5-a}
$$

Equate two expressions for gradient of $A B$

$$
\begin{aligned}
-\frac{3}{4} & =\frac{b-6}{5-a} \\
-3(5-a) & =4(b-6) \\
-15+3 a & =4 b-24 \\
3 a-4 b & =-9
\end{aligned}
$$

Find midpoint of $A B$

$$
\left(\frac{a+5}{2}, \frac{6+b}{2}\right)
$$

This point must lie on the perpendicular
bisector $8 x-6 y+3=0$

$$
\begin{aligned}
& 8\left(\frac{a+5}{2}\right)-6\left(\frac{6+b}{2}\right)+3=0 \\
& 4(a+5)-3(6+b)+3=0 \\
& 4 a+20-18-3 b+3=0 \\
& 4 a-3 b=-5
\end{aligned}
$$

We now have 2 simultaneous equations in a and b to solve

$$
\begin{aligned}
& 3 a-4 b=-9 \\
& 4 a-3 b=-5 \\
& 9 a-12 b=-27 \\
& 16 a-12 b=-20 \\
& 7 a=7 \\
& a=1 \\
& b=3
\end{aligned}
$$

