One root of the equation $4 z^{4}-4 z^{3}-25 z^{2}+55 z-42=0$ is $1+\frac{\sqrt{3}}{2} i$.
Find the other roots of the equation.

If $Z=1+\frac{\sqrt{3}}{2} i$ is a root ...then, the complex conjugate $z^{*}=1-\frac{\sqrt{3}}{2} i$ is also a root

$$
\begin{aligned}
& \text { Factors of the equation are } \\
& \qquad \begin{array}{r}
z-\left(1+\frac{\sqrt{3}}{2} i\right) \\
\\
z-\left(1-\frac{\sqrt{3}}{2} i\right)
\end{array}
\end{aligned}
$$

The polynomial equation is

$$
\begin{aligned}
& a(x-\alpha)(x-\beta)\left(z-\left(1+\frac{\sqrt{3}}{2} i\right)\right)\left(z-\left(1-\frac{\sqrt{3}}{2} i\right)\right)=0 \\
& \left(z-\left(1+\frac{\sqrt{3}}{2} i\right)\right)\left(z-\left(1-\frac{\sqrt{3}}{2} i\right)\right) \\
& =z^{2}-\left(1-\frac{\sqrt{3}}{2} i\right) z-\left(1+\frac{\sqrt{3}}{2} i\right) z+\left(1+\frac{\sqrt{3}}{2} i\right)\left(1-\frac{\sqrt{3}}{2} i\right) \\
& =z^{2}-2 z+1-\frac{3}{4} i^{2} \\
& =z^{2}-2 z+\frac{7}{4}
\end{aligned}
$$

$$
4 z^{4}-4 z^{3}-25 z^{2}+55 z-42=a(z-\alpha)(z-\beta)\left(z^{2}-2 z+\frac{7}{4}\right)
$$

$$
=(z-\alpha)(z-\beta)\left(4 z^{2}-8 z+7\right)
$$

$$
=\left(z^{2}+b z-6\right)\left(4 z^{2}-8 z+7\right)
$$

$$
\begin{gathered}
-4 z^{3}=-8 z^{3}+4 b z^{3} \quad b=1 \\
4 z^{4}-4 z^{3}-25 z^{2}+55 z-42=\left(z^{2}+z-6\right)\left(4 z^{2}-8 z+7\right) \\
4 z^{4}-4 z^{3}-25 z^{2}+55 z-42=0 \\
\\
4 z^{2}-8 z+7=0 \\
\\
z=1+\frac{\sqrt{3}}{2} i, z=1-\frac{\sqrt{3}}{2} i \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
z=-3+z)(z-2)=2
\end{gathered}
$$

Other roots $z=1-\frac{\sqrt{3}}{2} i, z=-3, z=2$

