The quadratic equation $3 x^{2}-8 x+2=0$ has roots α and β.
a. Without solving the equation, find the value of $\alpha+\beta$ and $\alpha \beta$.
b. Another quadratic equation $3 x^{2}+b x+c=0, b, c \in \mathbb{Z}$ has roots $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$. Find the value of b and the value c
a.

$$
\begin{aligned}
& \qquad \begin{array}{l}
3 x^{2}-8 x+2=0 \\
\text { Sum of roots } \\
\\
\\
\text { Product of roots } \\
\\
\end{array} \alpha=\frac{8}{3}
\end{aligned}
$$

b.

$$
\begin{aligned}
& 3 x^{2}+b x+c=0 \\
& \text { Sum of roots } \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}}{\alpha \beta}+\frac{\beta^{2}}{\alpha \beta} \\
& \frac{\alpha^{2}}{\alpha \beta}+\frac{\beta^{2}}{\alpha \beta}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta} \\
&=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta} \\
&=\frac{\left(\frac{8}{3}\right)^{2}-2\left(\frac{2}{3}\right)}{\frac{2}{3}} \\
&=\frac{\frac{64}{9}-\frac{4}{3}}{\frac{2}{3}} \\
&=\frac{\frac{64}{9}-\frac{12}{9}}{\frac{2}{3}} \\
&=\left(\frac{52}{9}\right) \times \frac{3}{2} \\
&=\frac{26}{3}
\end{aligned}
$$

Product of roots $=\frac{\alpha}{\beta} \times \frac{\beta}{\alpha}=1$

$$
\begin{aligned}
& \qquad \begin{array}{l}
3 x^{2}+b x+c=0 \\
\text { Sum of roots } \frac{-b}{3}=\frac{26}{3} \Rightarrow b=-26 \\
\text { Product of roots } \frac{c}{3}=1 \quad \Rightarrow c=3
\end{array}, ~
\end{aligned}
$$

