Let $f(x)=2 x^{4}+x^{3}-14 x^{2}+5 x+6, x \in \mathbb{R}$
a. For the polynomial equation $f(x)=0$, find the value of
i. the sum of the roots
ii. the product of the roots
b. A new polynomial is defined by $g(x)=f(x-2)$.

Find the sum of the roots of the equation $g(x)=0$
A. $2 x^{4}+x^{3}-14 x^{2}+5 x+6=0$

Sum of roots $=-\frac{1}{2}$
Product of roots $=3$
B.

$$
\begin{aligned}
& y=f(x) \text { has } 4 \text { roots } \\
& y=g(x)=f(x-2) \text { The graph is translated } 2 \text { units to the right. } \\
& \text { Each root is translated } 2 \text { units to the right (value increase by 2) } \\
& \text { Sum of roots }=-\frac{1}{2}+4 \times 2 \\
& \\
& \\
& \text { Sum of roots }=\mathbf{7} \frac{1}{2}
\end{aligned}
$$

