Consider the equation $8 x^{3}-42 x^{2}+p x-27=0$.
a. State
i. the sum of the roots of the equation
ii. the product of the roots of the equation
b. The roots of this equation are three consecutive terms of a geometric sequence.

Taking the roots to be $\frac{\alpha}{\beta}, \alpha, \alpha \beta$, show that one of the roots is $\frac{3}{2}$.
c. Solve the equation.
d. Find the value of p.
a.

$$
\begin{aligned}
& \qquad \begin{aligned}
& 8 x^{3}-42 x^{2}+p x-27=0 \\
&=\frac{42}{8}=\frac{21}{4} \\
& \text { Sum of rooduct of roots }=\frac{27}{8}
\end{aligned}
\end{aligned}
$$

b.

$$
\begin{gathered}
\frac{\alpha}{\beta}, \alpha, \alpha \beta \\
\text { Product of roots }=\frac{\alpha}{\beta} \times \alpha \times \alpha \beta \\
\alpha^{3}=\frac{27}{8} \\
\alpha=\frac{3}{2}
\end{gathered}
$$

c.

$$
\begin{aligned}
& \text { Roots are } \frac{3}{2}, \frac{3}{\beta}, \frac{3}{2} \beta \\
& \\
& \qquad \begin{aligned}
& \frac{3}{2 \beta}, \frac{3}{2}, \frac{3 \beta}{2} \\
&=\frac{3}{2 \beta}+\frac{3}{2}+\frac{3 \beta}{2} \\
& \frac{3}{2 \beta}+\frac{3}{2}+\frac{3 \beta}{2}=\frac{21}{4} \\
& \frac{3}{2 \beta}+\frac{3 \beta}{2}=\frac{15}{4} \\
& \frac{3+3 \beta^{2}}{2 \beta}=\frac{15}{4} \\
& 6+6 \beta^{2}=15 \beta \\
& 6 \beta^{2}-15 \beta+6=0
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \beta^{2}-5 \beta+2=0 \\
& (2 \beta-1)(\beta-2)=0 \\
& \beta=\frac{1}{2}, \beta=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { Roots are } \frac{3}{4}, \frac{3}{2}, 3 \\
& \\
& x=\frac{3}{4}, \frac{3}{2}, 3
\end{aligned}
$$

d.

$$
\begin{aligned}
& \text { Polynomial equation } a(4 x-3)(2 x-3)(x-3)=0 \\
& \\
& \left.\qquad \begin{array}{l}
a(4 x-3)\left(2 x^{2}-9 x+9\right)=0 \\
\\
\\
\\
a\left(8 x^{3}-36 x^{2}+36 x-6 x^{2}+27 x-27\right)=0 \\
8 x^{3}-42 x^{2}+p x-27=0 \Rightarrow a=1 \\
\\
\end{array}\right\}=63
\end{aligned}
$$

