Consider the equation $8x^3 - 42x^2 + px - 27 = 0$.

- a. State
 - i. the sum of the roots of the equation
 - ii. the product of the roots of the equation
- b. The roots of this equation are three consecutive terms of a geometric sequence. Taking the roots to be $\frac{\alpha}{\beta}$, α , $\alpha\beta$, show that one of the roots is $\frac{3}{2}$.
- c. Solve the equation.
- d. Find the value of *p*.

a.

$$8x^{3} - 42x^{2} + px - 27 = 0$$
Sum of roots

$$= \frac{42}{8} = \frac{21}{4}$$
Product of roots

$$= \frac{27}{8}$$

b.

$$\frac{\alpha}{\beta}, \alpha, \alpha\beta$$
Product of roots $= \frac{\alpha}{\beta} \times \alpha \times \alpha\beta$

$$\alpha^{3} = \frac{27}{8}$$

$$\alpha = \frac{3}{2}$$

c.

Roots are
$$\frac{3}{2}$$
, $\frac{3}{2}$,

$$2\beta^2 - 5\beta + 2 = 0$$
$$(2\beta - 1)(\beta - 2) = 0$$
$$\beta = \frac{1}{2}, \beta = 2$$

Roots are
$$\frac{3}{4}, \frac{3}{2}, 3$$

 $x = \frac{3}{4}, \frac{3}{2}, 3$

d.

Polynomial equation
$$a(4x - 3)(2x - 3)(x - 3) = 0$$

 $a(4x - 3)(2x^2 - 9x + 9) = 0$
 $a(8x^3 - 36x^2 + 36x - 6x^2 + 27x - 27) = 0$
 $a(8x^3 - 42x^2 + 63x - 27) = 0$

$$8x^3 - 42x^2 + px - 27 = 0 \Rightarrow a = 1$$
$$p = 63$$