The quadratic equation $x^{2}-4 x+5=0$ has roots α and β.
a. Without solving the equation, find the value of
i. $\alpha+\beta$;
ii. $\alpha \beta$.
b. Another quadratic equation $5 x^{2}+b x+c=0, b, c \in \mathbb{Z}$, has roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$. Find the value of b and the value of c.
a.

$$
\begin{aligned}
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0 & \\
& \text { Sum of roots }=-\frac{a_{n-1}}{a_{n}} \\
& \text { Product of roots }=(-1)^{n} \frac{a_{0}}{a_{n}}
\end{aligned}
$$

$$
\begin{aligned}
1 x^{2}-4 x+5=0 & \\
& \alpha+\beta=-\frac{-4}{1}=4 \\
& \alpha \beta=(-1)^{2} \frac{5}{1}=5
\end{aligned}
$$

b.

Another quadratic equation has roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$
Sum of roots $=\frac{1}{\alpha}+\frac{1}{\beta}$
Product of roots $=\frac{1}{\alpha} \times \frac{1}{\beta}$

Sum of roots $=\frac{1}{\alpha}+\frac{1}{\beta}$
$=\frac{\beta}{\alpha \beta}+\frac{\alpha}{\alpha \beta}$
$=\frac{\alpha+\beta}{\alpha \beta}$
$=\frac{4}{5}$

Product of roots $=\frac{1}{\alpha} \times \frac{1}{\beta}$
$=\frac{1}{\alpha \beta}$
$=\frac{1}{5}$
$5 x^{2}+b x+c=0$
Sum of roots $=\frac{-b}{5}=\frac{4}{5}$
$b=-4$
Product of roots $=\frac{c}{5}=\frac{1}{5}$
$c=1$

