

We tend to use Greek letters $\alpha, \beta, \gamma, \ldots$ to represent the roots of polynomial equations.

The sum of the roots and the product of the roots are directly related to the polynomial equation.

Degree
Polynomial equation
$\begin{array}{cc}\text { Sum of } & \begin{array}{c}\text { Product of } \\ \text { Roots }\end{array} \\ \text { Roots }\end{array}$
2

$$
a_{2} x^{2}+a_{1} x+a_{0}=0
$$

$$
-\frac{a_{1}}{a_{2}} \quad \frac{a_{0}}{a_{2}}
$$

3

$$
a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0
$$

$$
-\frac{a_{2}}{a_{3}} \quad-\frac{a_{0}}{a_{3}}
$$

4

$$
a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0
$$

$$
-\frac{a_{3}}{a_{4}} \quad \frac{a_{0}}{a_{4}}
$$

5

$$
\begin{gathered}
a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \\
=0
\end{gathered} \quad-\frac{a_{4}}{a_{5}} \quad-\frac{a_{0}}{a_{5}}
$$

n $\quad a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0$

$$
-\frac{a_{n-1}}{a_{n}} \quad(-1)^{n} \frac{a_{0}}{a_{n}}
$$

n

$$
\sum_{r=1}^{n} a_{r} x^{r} \quad-\frac{a_{n-1}}{a_{n}} \quad(-1)^{n} \frac{a_{0}}{a_{n}}
$$

Questions on roots of polynomials can also include complex roots...

Complex Roots of Polynomial Equations

The conjugate root theorem states that if the complex number $a+b i$ is a root of a polynomial $\mathrm{f}(\mathrm{x})$ in one variable with real coefficients, then the complex conjugate $a-b i$ is also a root of that polynomial.

