Consider the equation $64x^3 - 144x^2 + 92x - 15 = 0$

- a. Write down the numerical value of the sum and the product of the roots of this equation.
- b. The roots of this equation are three consecutive terms of an arithmetic sequence. Solve the equation.

a.

$$64x^{3} - 144x^{2} + 92x - 15 = 0$$
Sum of the roots
$$= -\frac{-144}{64}$$

$$= \frac{9}{4}$$
Product of the roots
$$= -\frac{-15}{64}$$

$$= \frac{15}{64}$$

b.

Let the three roots be α , β , γ The three roots form terms of an arithmetric sequence α, β, γ

We could write the terms as $\,\beta-d$, β , $\beta+d$

Sum of the roots
$$\beta - d + \beta + \beta + d = 3\beta$$

 $3\beta = \frac{9}{4}$
 $\beta = \frac{3}{4}$

Roots are $\frac{3}{4} - d$, $\frac{3}{4}$, $\frac{3}{4} + d$

Product of the roots
$$\left(\frac{3}{4} - d\right)\frac{3}{4}\left(\frac{3}{4} + d\right) = \frac{15}{64}$$

 $\frac{3}{4}\left(\frac{3}{4} - d\right)\left(\frac{3}{4} + d\right) = \frac{15}{64}$
 $\left(\frac{3}{4} - d\right)\left(\frac{3}{4} + d\right) = \frac{5}{16}$
 $\frac{9}{16} - d^2 = \frac{5}{16}$
 $\frac{9}{16} - \frac{5}{16} = d^2$
 $\frac{1}{4} = d^2$
 $d = \pm \frac{1}{2}$

Roots are $\frac{1}{4}$, $\frac{3}{4}$, $\frac{5}{4}$