What are roots?

$$
\begin{aligned}
& 2 x^{2}-7 x+6=0 \\
& (2 x-3)(x-2)=0 \\
& x=\frac{3}{2}, x=2
\end{aligned}
$$

Sum of roots $=\frac{3}{2}+2=\frac{7}{2}$
Product of roots $=\frac{3}{2} \times 2=3$

$$
\begin{aligned}
& 2\left(x-\frac{3}{2}\right)(x-2)=0 \\
& a x^{2}+b x+c=0 \\
& a(x-\alpha)(x-\beta)=0 \\
& a x^{2}-a(\alpha+\beta) x+a \alpha \beta=0 \\
& \text { Sum of roots }=-\frac{b}{a} \\
& \text { Product of roots }=\frac{c}{a} \\
& 3 x^{3}-10 x^{2}+x+6=0 \\
& (3 x+2)(x-1)(x-3)=0 \\
& x=-\frac{2}{3}, x=1, x=3 \\
& \text { Sum of roots }=-\frac{2}{3}+1+3=\frac{10}{3} \\
& \text { Product of roots }=-\frac{2}{3} \times 1 \times 3=-2 \\
& 3\left(x+\frac{2}{3}\right)(x-1)(x-3)=0 \\
& a x^{3}+b x^{2}+c x+d=0 \\
& a(x-\alpha)(x-\beta)(x-\gamma)=0 \\
& a x^{3}-a(\alpha+\beta+\gamma) x^{2}+a(\alpha \beta+\alpha \gamma+\beta \gamma) x-a \alpha \beta \gamma=0 \\
& \text { Sum of roots }=-\frac{b}{a} \\
& \text { Product of roots }=-\frac{d}{a} \\
& a x^{4}+b x^{3}+c x^{2}+d x+e=0 \\
& a(x-\alpha)(x-\beta)(x-\gamma)(x-\delta)=0 \\
& a x^{4}-a(\alpha+\beta+\gamma+\delta) x^{3}+\cdots-\cdots+a \alpha \beta \gamma \delta=0 \\
& \text { Sum of roots }=-\frac{b}{a} \\
& \text { Product of roots }=\frac{e}{a}
\end{aligned}
$$

degree Polynomial equation
$2 a x^{2}+b x+c=0$
$3 a x^{3}+b x^{2}+c x+d=0$
$4 a x^{4}+b x^{3}+c x^{2}+d x+e=0$
$5 \quad a x^{5}+b x^{4}+c x^{3}+d x^{2}+e x+f=0$

Sum of roots Product of roots
$-\frac{b}{a} \quad \frac{c}{a}$
$-\frac{b}{a}$
$-\frac{d}{a}$
$-\frac{b}{a}$
$\frac{e}{a}$
$-\frac{b}{a}$
$-\frac{f}{a}$
degree
Polynomial equation
Sum of
Product of roots roots
$-\frac{a_{1}}{a_{2}} \quad \frac{a_{0}}{a_{2}}$
$-\frac{a_{2}}{a_{3}}$
$-\frac{a_{0}}{a_{3}}$
$4 \quad a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0$
$-\frac{a_{3}}{a_{4}} \quad \frac{a_{0}}{a_{4}}$
$5 \quad a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0-\frac{a_{4}}{a_{5}} \quad-\frac{a_{0}}{a_{5}}$
$\mathrm{n} \quad a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0$
$-\frac{a_{n-1}}{a_{n}}$
$(-1)^{n} \frac{a_{0}}{a_{n}}$
n $\quad \sum_{r=1}^{n} a_{r} x^{r}$
$-\frac{a_{n-1}}{a_{n}}$
$(-1)^{n} \frac{a_{0}}{a_{n}}$

