Show that the area bounded by the graphs of $y=f(x)$ and $y=g(x)$ in the interval $0 \leq x \leq \pi$ is given by $2-\frac{\pi}{2}$
$f(x)=\sin x$
$g(x)=\sin ^{2} x$

Area under a curve
$A=\int_{a}^{b} y \mathrm{~d} x$ or $A=\int_{a}^{b} x \mathrm{~d} y$

$$
\begin{aligned}
& \int \sin x \mathrm{~d} x=-\cos x+C \\
& \text { Double angle identities } \\
& \int \cos x \mathrm{~d} x=\sin x+C \\
& =\int_{0}^{\pi} \sin x d x-\int_{0}^{\pi} \sin ^{2} x d x \\
& =[-\cos x]_{0}^{\pi}-\int_{0}^{\pi}\left(\frac{1}{2}-\frac{1}{2} \cos 2 x\right) d x \\
& =[-\cos \pi-(-\cos 0)]-\left[\frac{1}{2} x-\frac{1}{4} \sin 2 x\right]_{0}^{\pi} \\
& =[1+1]-\left[\left(\frac{\pi}{2}-\frac{1}{4} \sin 2 \pi\right)-\left(0-\frac{1}{4} \sin 0\right)\right] \\
& =2-\left[\left(\frac{\pi}{2}-0\right)-(0-0)\right] \\
& =2-\frac{\pi}{2} \\
& \begin{array}{r}
\cos 2 x \equiv 1-2 \sin ^{2} x \\
2 \sin ^{2} x \equiv 1-\cos 2 x
\end{array} \\
& \begin{array}{r}
\cos 2 x \equiv 1-2 \sin ^{2} x \\
2 \sin ^{2} x \equiv 1-\cos 2 x
\end{array} \\
& \sin ^{2} x \equiv \frac{1}{2}-\frac{1}{2} \cos 2 x \\
& \sin 2 \theta=2 \sin \theta \cos \theta \\
& \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1=1-2 \sin ^{2} \theta \\
& \tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}
\end{aligned}
$$

