$$
\int 2 x \cdot \arctan x d x=
$$

Use integration by parts:

$$
\begin{aligned}
& \int u \cdot \frac{d v}{d x} d x=u v-\int v \cdot \frac{d u}{d x} d x \\
& u=\arctan x \\
& \frac{d u}{d x}=\frac{1}{1+x^{2}} \\
& \frac{d v}{d x}=2 x \\
& v=x^{2}
\end{aligned}
$$

$$
\begin{aligned}
\int 2 x \cdot \arctan x d x & =(\arctan x)\left(x^{2}\right)-\int\left(x^{2}\right)\left(\frac{1}{1+x^{2}}\right) d x \\
& =x^{2} \arctan x-\int\left(\frac{x^{2}}{1+x^{2}}\right) d x \\
& =x^{2} \arctan x-\int\left(1-\frac{1}{1+x^{2}}\right) d x
\end{aligned}
$$

