a) Using the fact that $\tan x=\frac{\sin x}{\cos x}$, show that $\frac{d}{d x}(\tan x)=\frac{1}{\cos ^{2} x}$
b) Hence, find $\int \frac{\sqrt{\operatorname{tanx}}}{\cos ^{2} x} d x$
a)

$$
\begin{aligned}
\frac{d}{d x}(\tan x) & =\frac{d}{d x}\left(\frac{\sin x}{\cos x}\right) \\
& =\frac{\cos x \cdot \cos x-\sin x(-\sin x)}{\cos ^{2} x} \\
\frac{d}{d x}(\tan x) & =\frac{1}{\cos ^{2} x}
\end{aligned}
$$

b) $\int \frac{\sqrt{\tan x}}{\cos ^{2} x} d x$

$$
=\int \sqrt{u} d u
$$

$$
=\int u^{\frac{1}{2}} d u
$$

$$
=\frac{u^{\frac{3}{2}}}{\frac{3}{2}}+c
$$

$$
=\frac{2}{3}(\tan x)^{3 / 2}+c
$$

$$
=\frac{2}{3} \sqrt{\tan ^{3} x}+C
$$

Quotient Rule

$$
\begin{aligned}
& y=\frac{u}{v} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}} \\
& u=\sin x \quad v=\cos x \\
& \frac{d u}{d x}=\cos x \quad \frac{d v}{d x}=-\sin x \\
& \cos ^{2} \theta+\sin ^{2} \theta=1
\end{aligned}
$$

Integration by Substitution

