Integrating Factor Differential Equations

There are several steps involved in this method...

A differential equation that can be solved using an integrating factor must be in the form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

The integrating factor, \boldsymbol{I}, is a function that we get by working out

$$
I=e^{\int P(x) d x}
$$

We multiply the differential equation through by I :

$$
e^{\int P(x) d x} \frac{d y}{d x}+e^{\int P(x) d x} P(x) y=e^{\int P(x) d x} \boldsymbol{Q}(x)
$$

The left-hand side of this equation is the derivative of the product of two functions:

$$
e^{\int P(x) d x} \frac{d y}{d x}+e^{\int P(x) d x} P(x) y=\frac{d}{d x}\left(e^{\int P(x) d x} y\right)
$$

So, the equation becomes:

$$
\frac{d}{d x}\left(e^{\int P(x) d x} y\right)=e^{\int P(x) d x} Q(x)
$$

And we can solve this equation by integrating both sides of this equation:

$$
e^{\int P(x) d x} y=\int\left(e^{\int P(x) d x} Q(x)\right) d x
$$

Once we have worked out this integral, we divide both sides through by $\boldsymbol{e}^{\int \boldsymbol{P}(x) d x}$

