Volume of Revolution

Rotating $y=f(x)$ about the \mathbf{x} axis

The volume generated when the area between the curve $y=f(x)$ and the x axis from $x=a$ and $x=b$ is rotated 2π radians about the \mathbf{x} axis

$$
V=\pi \int_{a}^{b} y^{2} d x \text { or } V=\pi \int_{a}^{b}[f(x)]^{2} d x
$$

Rotating $x=f(y)$ about the \mathbf{y} axis

The volume generated when the area between the curve $x=f(y)$ and the y axis from $\mathrm{y}=a$ and $y=b$ is rotated 2π radians about the \mathbf{y} axis

$$
V=\pi \int_{a}^{b} x^{2} d y \text { or } V=\pi \int_{a}^{b}[f(y)]^{2} d y
$$

Rotating region bounded by two graphs

When a region like this is rotated about the x axis, a hollowed out solid is produced

You can find the volume generated under the red line and subtract the volume generated under the green curve

The volume generated when the area between the curve $y=g(x)$ and $y=f(x)$ from $x=a$ and $x=b$ is rotated 2π radians about the \mathbf{x} axis

$$
V=\pi \int_{a}^{b}[g(x)]^{2} d x-\pi \int_{a}^{b}[f(x)]^{2} d x
$$

This can be simplified to

$$
V=\pi \int_{a}^{b}\left([g(x)]^{2}-[f(x)]^{2}\right) d x
$$

...and a similar method can be used if the region is rotated about the y axis

