On average, it is found that 5% of AirPods made on a production line are faulty.

a) Find the probability that in a random sample of 10, there are

- i) No faulty AirPods
- ii) more than one faulty set of AirPods

b) A sample of *n* sets of AirPods is taken from the production line. If the probability that there is at least one faulty AirPod is **more than 75%,** find the smallest possible value of *n*

a) This is a Binomial Distribution. Let **X** be the number of faulty sets of AirPods

X~*B*(10,0.05)

i) $P(X = 0) = 0.95^{10} \approx 0.599$

ii) 0 1 <mark>2 3 4 5 6 7 8 9 10</mark>

 $P(X > 1) = P(X \ge 2) \approx 0.0861$

Use BinomialCDF: Lower = 2 Upper = 10 Number of Trials = 10 P = 0.05

b) *X~B*(**n**, 0.05)

0 1 2 3 4 5 6 ...

 $P(X \ge 1) > 75\%$

1 - P(X = 0) > 0.75

P(X=0) < 0.25

 $0.95^n < 0.25$

© Richard Wade studyib.net

We can solve by trial and error or using the	We can use logs to solve $0.95^n = 0.25$
table function of our graphical calculator	$\log(0.95^n) = \log 0.25$
$0.95^{26} \approx 0.264$	nlog 0.95 = log 0.25
$0.95^{27} \approx 0.250$	log0.25
$0.95^{28} \approx 0.238$	$n = \frac{1}{\log 0.95}$
Hence	$n \approx 27.03$
n = 28	It is tempting to round this number down. Checking this answer like we have done on the left shows that n=28 is the first number that takes this probability under 25%
	n = 28

