On average, it is found that 5\% of AirPods made on a production line are faulty.
a) Find the probability that in a random sample of 10 , there are
i) No faulty AirPods
ii) more than one faulty set of AirPods
b) A sample of \boldsymbol{n} sets of AirPods is taken from the production line. If the probability that there is at least one faulty AirPod is more than $\mathbf{7 5 \%}$, find the smallest possible value of \boldsymbol{n}
a) This is a Binomial Distribution. Let \boldsymbol{X} be the number of faulty sets of AirPods
$X \sim B(10,0.05)$
i) $P(X=0)=0.95^{10} \approx \mathbf{0 . 5 9 9}$
ii) 012345678910
$P(X>1)=P(X \geq 2) \approx \mathbf{0 . 0 8 6 1}$
Use BinomialCDF:
Lower $=2$
Upper $=10$
Number of Trials $=10$
$P=0.05$
b) $X \sim B(n, 0.05)$
$0123456 \ldots$
$P(X \geq 1)>75 \%$
$1-P(X=0)>0.75$
$P(X=0)<0.25$
$0.95^{n}<0.25$

We can solve by trial and error or using the table function of our graphical calculator $\begin{aligned} & 0.95^{26} \approx 0.264 \\ & 0.95^{27} \approx 0.250 \\ & 0.95^{28} \approx 0.238 \end{aligned}$ Hence $n=28$	We can use logs to solve $0.95^{n}=0.25$ $\begin{aligned} & \log \left(0.95^{n}\right)=\log 0.25 \\ & n \log 0.95=\log 0.25 \\ & n=\frac{\log 0.25}{\log 0.95} \\ & n \approx 27.03 \end{aligned}$ It is tempting to round this number down. Checking this answer like we have done on the left shows that $n=28$ is the first number that takes this probability under 25\% $n=28$

