The binomial distribution is an example of a discrete random variable. It has two parameters \mathbf{n} (number of trials) and \mathbf{p} (probability of success of one trial):

$$
X \sim B(n, p)
$$

For a situation to be described using a binomial model, the following must be true

- A finite number of trials, n are carried out
- The trials are independent
- The outcome of each trial is deemed either a success or a failure
- The probability, p, of a successful outcome is the same for each trial

We calculate probabilities using the following formula

$$
P(X=r)={ }^{n} C_{r} \times p^{r} \times(1-p)^{n-r}
$$

${ }^{\mathrm{n}} \mathbf{C}_{\mathrm{r}}=\binom{\boldsymbol{n}}{\boldsymbol{r}}$ is the combination of selecting \boldsymbol{r} items from a total of \boldsymbol{n} items

Often we can use the formula in our graphical calculators:

Binompdf is for finding individual values e.g. $P(X=3)$
Binomcdf is for finding the probability of an interval e.g. $P(X \geq 3)$
Care needs to be taken to interpret what the question is asking. Writing out the possible outcomes helps to avoid making mistakes:
e.g. $X \sim B(8,0.3)$

$P($ exactly 2)	012345678	binompdf, $x=2$
$P($ at least 2)	012345678	binomcdf, lower $=2$, upper $=8$
$P($ less than 3)	012345678	binomcdf, lower $=0$, upper = 2
$P(2<X \leq 6)$	012345678	binomcdf, lower $=3$, upper $=6$

The mean or expected value, $E(X)=n p$
The variance,

$$
\operatorname{Var}(X)=n p q
$$

$$
q=1-p
$$

