A and B are independent events. $P(A)=0.3$ and $P(B)=0.4$
a) Find $P\left(A^{\prime} \cap B^{\prime}\right)$
b) Hence find $\mathrm{P}\left(\mathrm{A}^{\prime} \mid \mathrm{B}^{\prime}\right)$

Since A and B are independent,
$P(A \cap B)=P(A) \times P(B)$
$P(A \cap B)=0.3 \times 0.4=0.12$

a) This question is fairly simply if we understand what $P\left(A^{\prime} \cap B^{\prime}\right)$ refers to Consider what is shaded in both $P\left(A^{\prime}\right)$ and $P\left(B^{\prime}\right)$

$$
P\left(A^{\prime}\right)
$$

$$
P\left(B^{\prime}\right)
$$

$$
P\left(A^{\prime} \cap B^{\prime}\right)=0.42
$$

© Richard Wade
studyib.net
b) $P\left(A^{\prime} \mid B^{\prime}\right)=\frac{P\left(A^{\prime} \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}$

$$
\begin{aligned}
& =\frac{0.42}{0.6} \\
& =0.7
\end{aligned}
$$

