Conditional Probability

Conditional probability is the probability of an event happening given that another event has already happened. The probability of A happening given that B has happened is written $P(A / B)$

Remember that $P(A \cap B)=\mathrm{P}(\mathrm{A}$ AND B$)$

Specific Case - A is a subset of B

$P(A / B)=\frac{P(A)}{P(B)}$

An example of this is rolling a die:
$P(X \leq 2 / X \leq 3)=\frac{2}{3}$

(12)3456

This situation happens often with questions about probability distributions like the Binomial Distribution and the Normal Distribution.

We can solve questions about conditional probability using probability trees
$P(B / A)$ is obvious from the tree diagram

The reversed case of $P(A / B)$ is more challenging. There is a formula given below which is called Bayes' Theorem, but it looks quite complicated and it is better to split the probability into two parts like this:
$P(A / B)=\frac{P(A \cap B)}{P(B)}$
We can find $P(B)=P(A) \times P(B / A)+P(\bar{A}) \times P(B / \bar{A})$

We can find $P(A \cap B)=P(A) \times P(B / A)$

So,
$P(A / B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A) \times P(B / A)}{P(A) \times P(B / A)+P(\bar{A}) \times P(B / \bar{A})}$
$P(A / B)=\frac{P(A) \times P(B / A)}{P(A) \times P(B / A)+P(\bar{A}) \times P(B / \bar{A})}$

This formula is sometimes called Bayes' Theorem and is probably the most important theorem in probability. It has many applications, including medicine, where it is used to determine the accuracy of medical tests.

