The probability density function of $X$ is given by

$$
f(x)=\left\{\begin{array}{cl}
a x^{n} & 0 \leq x<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Show that $a=n+1$
b) Given that $E(X)=\frac{3}{4}$
a) For continuous random variables, the total area under the function = 1
$\int_{-\infty}^{\infty} f(x) d x=1$
In our case,
$\int_{0}^{1} a x^{n} d x=1$
$\left[\frac{a x^{n+1}}{n+1}\right]_{0}^{1}=1$
$\frac{a}{n+1}=1$
Therefore, $\mathrm{a}=\mathrm{n}+1$
b) For continuous random variables,
$\mathrm{E}(X)=\int_{-\infty}^{\infty} x f(x) d x$
In our case,
$E(X)=\int_{0}^{1} x \cdot a x^{n} d x$
$E(X)=\int_{0}^{1} a x^{n+1} d x$
We know from part a) that $\mathrm{a}=\mathrm{n}+1$
$E(X)=\int_{0}^{1}(\mathrm{n}+1) x^{n+1} d x$
$E(X)=\left[\frac{(\mathrm{n}+1) x^{n+2}}{\mathrm{n}+2}\right]_{0}^{1}$
$E(X)=\frac{\mathrm{n}+1}{\mathrm{n}+2}$
We are told that $E(X)=\frac{3}{4}$
$\frac{n+1}{n+2}=\frac{3}{4}$
Therefore, $n=2$

And $\mathrm{a}=3$

