Continuous Random Variables

Continuous Random Variables are often represented as functions.

These can often be piecewise functions. Notice that the function should be defined for all values of x

$$
f(x)=\left\{\begin{array}{cc}
x+1 & -1 \leq x<0 \\
-x+1 & 0 \leq x<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Probability calculations are made from finding the area under the graph

$$
P\left(x_{1} \leq X<x_{2}\right)=\int_{x_{1}}^{x_{2}} f(x) d x
$$

Since, all the probabilities add to 1 , then the total area under the graph = 1

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

Mean $=E(X)=\int_{-\infty}^{\infty} x f(x) d x$

$$
\begin{aligned}
\text { Variance } & =E(X)^{2}-[E(X)]^{2} \\
& =\int_{-\infty}^{\infty} x^{2} f(x) d x-\left[\int_{-\infty}^{\infty} x f(x) d x\right]^{2}
\end{aligned}
$$

Median, m is the value that divides the area of the function in two equal parts. It can be found by solving:

$$
\int_{-\infty}^{\mathrm{m}} f(x) d x=0.5
$$

Mode is the value at which the probability density function reaches a local maximum

