The following table shows the probability distribution of a discrete random variable \boldsymbol{X}.

X	-2	-1	0	1	3
$\mathrm{P}(\mathrm{X}=\mathrm{x})$	0.3	\boldsymbol{a}	0.2	0.15	\boldsymbol{b}

If \boldsymbol{X} represents the return from a game. Find \boldsymbol{a} and \boldsymbol{b} if the game is fair.

We know that $\sum \boldsymbol{P}=\mathbf{1}$	
	$\begin{aligned} & 0.3+a+0.2+0.15+b=1 \\ & \boldsymbol{a}+\boldsymbol{b}=\mathbf{0 . 3 5} \end{aligned}$
A fair game means that $\mathbf{E}(\mathbf{X})=\mathbf{0}$	
	$\begin{aligned} & -2 \times 0.3+(-1) \times a+0 \times 0.2+1 \times 0.15+3 \times b=0 \\ & -0.6-a+0.15+3 b=0 \\ & -\boldsymbol{a}+\mathbf{3 b}=\mathbf{0 . 4 5} \end{aligned}$
We can solve these two equations simultaneously	
$\begin{array}{r} a+b= \\ -a+3 b= \end{array}$	$\begin{aligned} & 0.35 \\ & 0.45 \end{aligned}$
$4 b=$ $b=$	$\begin{aligned} & 0.8 \\ & 0.2 \end{aligned}$
$\boldsymbol{a}=$	0.15

