The discrete random variable X has probability function
$\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x})=\boldsymbol{k}\left(\frac{\mathbf{2}}{\mathbf{5}}\right)^{\boldsymbol{x}}$ for $x \in \mathbb{Z}, x>0$
Work out the value of \boldsymbol{k}

$$
\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x})=\boldsymbol{k}\left(\frac{2}{5}\right)^{\boldsymbol{x}} \text { for } x \in \mathbb{Z}, x>0
$$

Work out some probabilities

$$
\begin{aligned}
& P(X=1)=k\left(\frac{2}{5}\right)^{1}=\frac{2}{5} k \\
& P(X=2)=k\left(\frac{2}{5}\right)^{2}=\frac{4}{25} k \\
& P(X=3)=k\left(\frac{2}{5}\right)^{3}=\frac{8}{125} k
\end{aligned}
$$

We know that the sum of the probabilities = 1

$$
\begin{aligned}
& \frac{2}{5} k+\frac{4}{25} k+\frac{8}{125} k+\cdots=1 \\
& k\left(\frac{2}{5}+\frac{4}{25}+\frac{8}{125}+\cdots\right)=1
\end{aligned}
$$

This is an infinite geometric series.

$$
\frac{2}{5}+\frac{4}{25}+\frac{8}{125}+\cdots=\frac{1}{k}
$$

$$
S_{\infty}=\frac{U_{1}}{1-r}
$$

$$
S_{\infty}=\frac{\frac{2}{5}}{1-\frac{2}{5}}
$$

$$
S_{\infty}=\frac{\frac{2}{5}}{\frac{3}{5}}=\frac{2}{3}
$$

$$
\frac{2}{3}=\frac{1}{k}
$$

$$
k=\frac{3}{2}
$$

