Discrete Random Variables

These are just a way of using more formal language to describe probability events. In the examination, they can be given in 2 different ways: in table form or as a function (it is also useful to recognize graphs).

Let's consider a simple case of flipping 3 coins. In this case, there are 8 equally likely outcomes

HHH, HHT, HTH, HTT, THH, THT, TTH, TTT

Imagine we are interested in the number of heads that we flip. We can either flip 0 or 1 or 2 or 3 heads:

Number of heads	eads Probability	
0	$\frac{1}{8}$	
1	$\frac{3}{8}$	
2	$\frac{3}{8}$	
3	$\frac{1}{8}$	

Let **X** be the random variable: the number of heads flipped when we flip 3 coins. We can represent this random variable

1) in table form

X	0	1	2	3
P(X = x)	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

2) as a function

$$P(X = x) = {3 \choose x} \cdot \frac{1}{8}$$
 for $x \in \{0, 1, 2, 3\}$

We can easily find the expected value using the formula

$$E(X) = \sum x P(X = x)$$

In the case above, $E(X) = 0 \cdot \frac{1}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3 \cdot \frac{1}{8} = 1.5$

We could have used the fact that the function is symmetrical to work this out!

Note, **Fair games** mean that E(X) = 0

© Richard Wade studyib.net Exam questions often give the random variable as a function in which you use the fact that probabilities of all possible outcomes add up to 1 to work out an unknown:

P(X = x) = kx for $x \in \{1, 2, 3, 4\}$

Find **k**

 $P(X = 1) = k \cdot 1$ $P(X = 2) = k \cdot 2$ $P(X = 3) = k \cdot 3$ $P(X = 4) = k \cdot 4$

$$\sum P(X = x) = k + 2k + 3k + 4k = 1$$
$$10k = 1$$

k = 0.1

