Discrete Random Variables

These are just a way of using more formal language to describe probability events. In the examination, they can be given in 2 different ways: in table form or as a function (it is also useful to recognize graphs).

Let's consider a simple case of flipping 3 coins. In this case, there are 8 equally likely outcomes

HHH , HHT , HTH , HTT , THH , THT , TTH , TTT

Imagine we are interested in the number of heads that we flip. We can either flip 0 or 1 or 2 or 3 heads:

Let \boldsymbol{X} be the random variable: the number of heads flipped

Number of heads	Probability
0	$\frac{1}{8}$
1	$\frac{3}{8}$
2	$\frac{3}{8}$
3	$\frac{1}{8}$

1) in table form

X	0	1	2	3
$P(X=x)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

2) as a function

$$
\mathrm{P}(\mathrm{X}=\mathrm{x})=\binom{3}{x} \cdot \frac{1}{8} \quad \text { for } x \in\{0,1,2,3\}
$$

We can easily find the expected value using the formula

$$
E(X)=\sum x P(X=x)
$$

In the case above, $E(X)=0 \cdot \frac{1}{8}+1 \cdot \frac{3}{8}+2 \cdot \frac{3}{8}+3 \cdot \frac{1}{8}=1.5$

We could have used the fact that the function is symmetrical to work this out!

Note, Fair games mean that $E(X)=0$

Exam questions often give the random variable as a function in which you use the fact that probabilities of all possible outcomes add up to 1 to work out an unknown:
$\mathrm{P}(\mathrm{X}=\mathrm{x})=k x \quad$ for $x \in\{1,2,3,4\}$

Find \boldsymbol{k}
$\mathrm{P}(\mathrm{X}=1)=k \cdot 1$
$\mathrm{P}(\mathrm{X}=2)=k \cdot 2$
$\mathrm{P}(\mathrm{X}=3)=k \cdot 3$
$\mathrm{P}(\mathrm{X}=4)=k \cdot 4$

$$
\begin{gathered}
\sum P(X=x)=k+2 k+3 k+4 k=1 \\
10 k=1 \\
k=0.1
\end{gathered}
$$

