

It is known that 2% of Filips lightbulbs have a life of less than 1000 hours and 10% have a life less than 1100 hours. It can be assumed that lightbulb life is normally distributed with a mean of  $\mu$  and a standard deviation of  $\sigma$ 

- a) Find the value of  $\mu$  and the value of  $\sigma$ .
- b) Find the probability that a randomly selected Filips lightbulb will have a life of at least 1200 hours.



a) Let 
$$X \sim N(\mu, \sigma^2)$$

Draw a sketch of the two pieces of information and standardize using  $Z=rac{X-\mu}{\sigma}$ 



We have two simultaneous equations to solve

$$-2.0537 = \frac{1000 - \mu}{\sigma}$$
$$-1.2816 = \frac{1100 - \mu}{\sigma}$$

Rearrange

$$-2.0537 \sigma + \mu = 1000$$
  
 $-1.2816\sigma + \mu = 1100$ 

Use the simultaneous equation solver on the graphical calculator...

...to 3 significant figures (we should use a higher degree of accuracy for these values in the next question)

$$\mu \approx 1270$$
  $\sigma \approx 130$ 

b) Let 
$$X \sim N(1270, 130^2)$$

$$P(X > 1200) \approx 0.695$$

{using the values  $\mu \approx 1270$  and  $\sigma \approx 130$ , we get a value for the probability of **0.705**}