The Normal Distribution

The Normal Distribution is a continuous probability distribution. For a random variable X that is normally distributed with μ = mean and σ^2 =variance, we write $X \sim N(\mu, \sigma^2)$

Probabilities are found by calculating the areas under a bell-shaped graph.

- 68% of the data are within 1 standard deviation of the mean
- 95% of the data are within 2 standard deviations of the mean
- 99.7% of the data are within 3 standard deviation of the mean

There are 3 types of question you could be asked. In each case, you should draw sketches of the graph to help you visualise the problem:

1. Finding Probabilities

• On your calculator, use normalcdf

* Be careful to enter standard deviation and not the variance!

2. Inverse Problems

On your calculator, use InvNorm

3a. Finding Mean OR Standard Deviation

• Use the Standard Normal Distribution $Z \sim N(0, 1^2)$ to standardise your random variable using $Z = \frac{X-\mu}{\sigma}$

Example

Find μ if $X \sim N(\mu, 10)$ and P(X > 12) = 0.15

 $1.0364 \approx \frac{12 - \mu}{\sqrt{10}}$

 $\mu\approx 12-1.0364\times \sqrt{10}$

3b. Finding Mean AND Standard Deviation

- In this type of question, you will be given two pieces of information about probabilities. Carry out the question as above to find two equations with two unknowns.
- Solve the equations using the simultaneous equation solver on your calculator.

© Richard Wade studyib.net