The following diagram shows a quadrilateral $A B C D$.

$\mathrm{AD}=\mathrm{x}-1, \mathrm{BD}=\mathrm{x}+1, \mathrm{DC}=2 \mathrm{x}$ and $\angle A D C=120^{\circ}$
The sum of the area of triangle ADC and triangle BDC is $\mathbf{4} \sqrt{\mathbf{3}}$

Find \boldsymbol{x}

$$
\begin{aligned}
\text { Area of triangle ADC } & =\frac{1}{2} \times 2 x(x-1) \times \sin 120^{\circ} \\
& =x(x-1) \times \frac{\sqrt{3}}{2} \\
\text { Area of triangle BDC } & =\frac{1}{2} \times 2 x(x+1) \times \sin 60^{\circ} \\
& =x(x+1) \times \frac{\sqrt{3}}{2}
\end{aligned}
$$

Sum of areas $=4 \sqrt{3}$

$$
\begin{aligned}
& \qquad \begin{array}{l}
\frac{\sqrt{3}}{2} x(x-1)+\frac{\sqrt{3}}{2} x(x+1)=4 \sqrt{3} \\
\text { Factorise } \\
\frac{\sqrt{3}}{2} x\{(x-1)+(x+1)\}=4 \sqrt{3} \\
\frac{\sqrt{3}}{2} x(2 x)=4 \sqrt{3} \\
\sqrt{3} x^{2}=4 \sqrt{3} \\
x^{2}=4 \\
x=2
\end{array}
\end{aligned}
$$

