In a triangle $\mathrm{ABC}, \mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=\mathrm{a}, \mathrm{AC}=\mathrm{b}$ and $\angle B A C=30^{\circ}$
a) Show that $b^{2}-8 \sqrt{3 b}+64-a^{2}=0$
b) Hence find the possible values of a (in cm) for which the triangle has two possible solutions

Use the cosine rule:

$$
\begin{aligned}
& a^{2}=8^{2}+b^{2}-2 \times 8 \times b \times \cos 30^{\circ} \\
& a^{2}=64+b^{2}-16 b \times \frac{\sqrt{3}}{2} \\
& a^{2}=64+b^{2}-8 \sqrt{3} b \\
& b^{2}-8 \sqrt{3} b+64-a^{2}=0
\end{aligned}
$$

Use the quadratic formula or complete the square:

$$
\begin{aligned}
& b=\frac{8 \sqrt{3} \pm \sqrt{(8 \sqrt{3})^{2}-4 \times 1\left(64-a^{2}\right)}}{2} \\
& b=\frac{8 \sqrt{3} \pm \sqrt{192-4\left(64-a^{2}\right)}}{2}
\end{aligned}
$$

Note that dividing by 2 is like dividing by $\sqrt{4}$

$$
\begin{aligned}
& b=4 \sqrt{3} \pm \sqrt{48-64+a^{2}} \\
& b=4 \sqrt{3} \pm \sqrt{a^{2}-16}
\end{aligned}
$$

This equation has

- Zero roots when $a^{2}-16<0 \Rightarrow a<4$
- One root when $a^{2}-16=0 \quad \Rightarrow a=4$
- Two roots when $a^{2}-16>0 \Rightarrow a>4$

So the triangle appears to have two possible solutions when $a>4$
...except that there is an upper limit to this If $a \geq 8$, the triangle has one solution

For example,
when $b=6 \mathrm{~cm}$, there are two solutions

when $b=9 \mathrm{~cm}$, there is one solution

The triangle has two possible solutions for $4<a<8$

