- Let $cos\theta = \frac{2}{3}$, where $0 \le \theta \le \frac{\pi}{2}$ Find the value of a) $sin\theta$ b) $sin2\theta$
- c) sin40

 $cos\theta = \frac{2}{3}$, where $0 \le \theta \le \frac{\pi}{2}$

We can find the opposite side in the rightangled triangle using Pythagoras' Theorem

$$sin\theta = \frac{\sqrt{5}}{3}$$

b) $sin2\theta \equiv 2sin\theta cos\theta$

$$sin2\theta = 2 \cdot \frac{\sqrt{5}}{3} \cdot \frac{2}{3}$$
$$sin2\theta = \frac{4\sqrt{5}}{9}$$

c) In order to find $sin4\theta$, we need to find $cos2\theta$

$$cos2\theta \equiv 2cos^2\theta - 1$$

 $cos2\theta = 2\left(\frac{2}{3}\right)^2 - 1$

© Richard Wade studyib.net

$$cos2\theta = -\frac{1}{9}$$

Notice, that since $\cos\!2\theta$ is negative, then 2θ is an obtuse angle

 $sin2\theta \equiv 2sin\theta cos\theta$

 $sin4\theta \equiv 2sin2\theta cos2\theta$

$$\sin 4\theta \equiv 2\left(\frac{4\sqrt{5}}{9}\right)\left(-\frac{1}{9}\right)$$
$$\sin 4\theta \equiv -\frac{8\sqrt{5}}{81}$$

