Let $\cos \theta=\frac{2}{3}$, where $0 \leq \theta \leq \frac{\pi}{2}$
Find the value of
a) $\sin \theta$
b) $\sin 2 \theta$
c) $\sin 4 \theta$
a)

$$
\sin \theta=\frac{\sqrt{5}}{3}
$$

b) $\sin 2 \theta \equiv 2 \sin \theta \cos \theta$
c) In order to find $\sin 4 \theta$, we need to find $\cos 2 \theta$

$$
\begin{aligned}
& \cos 2 \theta \equiv 2 \cos ^{2} \theta-1 \\
& \cos 2 \theta=2\left(\frac{2}{3}\right)^{2}-1
\end{aligned}
$$

$$
\begin{aligned}
& \sin 2 \theta=2 \cdot \frac{\sqrt{5}}{3} \cdot \frac{2}{3} \\
& \sin 2 \theta=\frac{4 \sqrt{5}}{9}
\end{aligned}
$$

$$
\cos 2 \theta=-\frac{1}{9}
$$

Notice, that since $\cos 2 \theta$ is negative, then 2θ is an obtuse angle
$\sin 2 \theta \equiv 2 \sin \theta \cos \theta$
$\sin 4 \theta \equiv 2 \sin 2 \theta \cos 2 \theta$

$$
\begin{aligned}
& \sin 4 \theta \equiv 2\left(\frac{4 \sqrt{5}}{9}\right)\left(-\frac{1}{9}\right) \\
& \sin 4 \theta \equiv-\frac{8 \sqrt{5}}{81}
\end{aligned}
$$

