Find the intersection of two planes Π_{1} and Π_{2} in the form $\boldsymbol{r}=\boldsymbol{a}+\lambda \boldsymbol{b}$ where the components of \mathbf{b} are integers.
$\Pi_{1}: \quad x+2 y-z=5$
$\Pi_{2}: 2 x-y+3 z=-4$

$$
\begin{array}{cc}
x+2 y-z=5 & A \\
2 x-y+3 z=-4 & B
\end{array}
$$

$$
3 B \quad 3 x+6 y-3 z=15
$$

Eliminate Z

$$
A \times 3+B 5 x+5 y=11
$$

write y in terms of x

$$
\begin{aligned}
& 5 y=-5 x+11 \\
& y=-x+\frac{11}{5}
\end{aligned}
$$

$$
x+2 y-z=5 \quad A
$$

$$
2 x-y+3 z=-4 \quad B
$$

$$
B \times 24 x-2 y+6 z=-8
$$

$$
A \quad x+2 y-z=5
$$

Eliminate y

$$
B \times 2+A 5 x+5 z=-3
$$

write z in terms of x

$$
z=-x-\frac{3}{5}
$$

So our equations become

$$
\begin{aligned}
& x=x \\
& y=-x+\frac{11}{5} \\
& z=-x-\frac{3}{5}
\end{aligned}
$$

Let $x=\lambda$
$x=\lambda$
$y=-\lambda+\frac{11}{5}$
$z=-\lambda-\frac{3}{5}$

Write in vector form

$$
\boldsymbol{r}=\left(\begin{array}{c}
0 \\
\frac{11}{5} \\
-\frac{3}{5}
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right)
$$

