$$
\begin{aligned}
& x+y+z=8 \\
& a x-y=3 \\
& -x+3 y+4 z=b
\end{aligned}
$$

a) There is no unique solution solution to the system of equations. Find the value of \boldsymbol{a}.
b) Given that the system can be solved, find the value of \boldsymbol{b}.
a)

$$
\begin{aligned}
x+y+z & =8 & & A \\
a x-y & =3 & & \text { B } \\
-x+3 y+4 z & =b & & \text { C } \\
4 \times \mathrm{A} 4 x+4 y+4 z & =32 & & \\
4 \times \mathrm{A}-\mathrm{C} 5 x+y & =32-b & & \\
& & & \text { B } \\
& a x-y=3 & & 4 \times \text { A-C }
\end{aligned}
$$

Equate the coefficients of y

$$
\begin{aligned}
& -1 \times \mathrm{B} \\
& \\
& \begin{array}{l}
-a x+y=-3 \\
5 x+y=32-b \\
\\
a=-5
\end{array}
\end{aligned}
$$

b)

$$
\begin{aligned}
& 5 x+y=-3 \\
& 5 x+y=32-b
\end{aligned}
$$

Given that the system can be solved

$$
\begin{aligned}
& -3=32-b \\
& b=35
\end{aligned}
$$

