The three planes Π_1 , Π_2 and Π_3 meet at straight line

$$\Pi_1$$
: $2x + y + 3z = a$
 Π_2 : $x - 2y + 2z = -9$
 Π_3 : $3x + 4y + 4z = -1$

- a) Find a
- b) Find the equation of the straight line in the form $r = a + \lambda b$ where the components of **b** are integers.

a)
$$2x + y + 3z = a \qquad A$$

$$x - 2y + 2z = -9 \qquad B$$

$$3x + 4y + 4z = -1 \qquad C$$
Eliminate x

$$B \times 2 \quad 2x - 4y + 4z = -18 \qquad B \times 2$$

$$2x + y + 3z = a \qquad A$$

$$A - B \times 2 \quad 5y - z = a + 18$$

$$3x - 6y + 6z = -27 \qquad B \times 3$$

$$3x + 4y + 4z = -1 \qquad C$$

$$C - B \times 3 \quad 10y - 2z = 26$$

Equate the coefficients of y and z

$$(A - B \times 2) \times 2 \ 10y - 2z = 2a + 36$$

 $10y - 2z = 26$ $C - B \times 3$

Given that the system can be solved

$$2a + 36 = 26$$
$$2a = -10$$
$$a = -5$$

b)

Find
$$y$$
 in terms of z
From $C - B \times 3$

$$10y - 2z = 26$$

$$10y = 2z + 26$$

$$y = \frac{z + 13}{5}$$

Find x in terms of z

$$2x + y + 3z = -5$$

$$2x + \frac{z + 13}{5} + 3z = -5$$

$$10x + z + 13 + 15z = -25$$

$$10x = -16z - 38$$

$$x = \frac{-8z - 19}{5}$$

Write equation of line

$$x = \frac{-8z - 19}{5}$$

$$y = \frac{z + 13}{5}$$

$$z = z$$
Let $z = \lambda$

$$x = \frac{-8\lambda - 19}{5}$$

$$y = \frac{\lambda + 13}{5}$$

$$z = \lambda$$

Write in vector form

$$r = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{-8\lambda - 19}{5} \\ \frac{\lambda + 13}{5} \\ \lambda \end{pmatrix}$$

$$r = \begin{pmatrix} -\frac{19}{5} \\ \frac{13}{5} \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} \frac{1}{5} \\ \frac{1}{5} \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{5} \\ \frac{1}{5} \\ \frac{1}{5} \end{pmatrix}$$
 is parallel to $\begin{pmatrix} 1 \\ 1 \\ 5 \end{pmatrix}$

$$r = \begin{pmatrix} -\frac{19}{5} \\ \frac{13}{5} \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 5 \end{pmatrix}$$