The three planes Π_{1}, Π_{2} and Π_{3} meet at straight line
$\Pi_{1}: 2 x+y+3 z=a$
$\Pi_{2}: x-2 y+2 z=-9$
$\Pi_{3}: 3 x+4 y+4 z=-1$
a) Find a
b) Find the equation of the straight line in the form $\boldsymbol{r}=\boldsymbol{a}+\lambda \boldsymbol{b}$ where the components of \boldsymbol{b} are integers.
a)

$$
\begin{array}{ll}
2 x+y+3 z=a & A \\
x-2 y+2 z=-9 & B \\
3 x+4 y+4 z=-1 & C
\end{array}
$$

Eliminate x

$$
\begin{array}{rl}
B \times 22 x-4 y+4 z=-18 & B \times 2 \\
2 x+y+3 z=a & A \\
A-B \times 2 & 5 y-z=a+18 \\
& \\
& 3 x-6 y+6 z=-27 \\
3 x+4 y+4 z=-1 & B \times 3 \\
C-B \times 3 & 10 y-2 z=26
\end{array}
$$

$C-B \times 3$

Given that the system can be solved

$$
\begin{aligned}
2 a+36 & =26 \\
2 a & =-10 \\
a & =-5
\end{aligned}
$$

b)

Find y in terms of z
From $C-B \times 3$

$$
\begin{aligned}
& 10 y-2 z=26 \\
& 10 y=2 z+26 \\
& y=\frac{z+13}{5}
\end{aligned}
$$

Find x in terms of z

$$
\begin{aligned}
& 2 x+y+3 z=-5 \\
& 2 x+\frac{z+13}{5}+3 z=-5 \\
& 10 x+z+13+15 z=-25 \\
& 10 x=-16 z-38 \\
& x=\frac{-8 z-19}{5}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{-8 z-19}{5} \\
& y=\frac{z+13}{5} \\
& z=z
\end{aligned}
$$

$$
\text { Let } z=\lambda
$$

$$
\begin{aligned}
& x=\frac{-8 \lambda-19}{5} \\
& y=\frac{\lambda+13}{5} \\
& z=\lambda
\end{aligned}
$$

Write in vector form

$$
\boldsymbol{r}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
\frac{-8 \lambda-19}{5} \\
\frac{\lambda+13}{5} \\
\lambda
\end{array}\right)
$$

$$
\boldsymbol{r}=\left(\begin{array}{c}
-\frac{19}{5} \\
\frac{13}{5} \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
\frac{1}{5} \\
\frac{1}{5} \\
1
\end{array}\right)
$$

$\left(\begin{array}{l}\frac{1}{5} \\ \frac{1}{5} \\ 1\end{array}\right)$ is parallel to $\left(\begin{array}{l}1 \\ 1 \\ 5\end{array}\right)$

$$
\boldsymbol{r}=\left(\begin{array}{c}
-\frac{19}{5} \\
\frac{13}{5} \\
0
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
1 \\
5
\end{array}\right)
$$

